-cofficient, 각 변수별 계수의 유의확률 -회귀 모델의 R2 값은 0.7528로, 모델이 설명하는 데이터의 분산의 약 75.28%를 설명한다는 것을 의미합니다 -F-통계량(anova)은 91.38이고, 자유도는 1 및 30입니다 -F-통계량(모델의 적합)은 회귀 분석에서 SSR(회귀제곱합)을 SSE(잔차제곱합)으로 나눈 값
------------>이 결과값에서 나온 R과 f통계량이 무엇인지 더 자세히 알아보자
*R^2의 결정계수
sst(평균과 점들간의 차이)=ssr(내가 만든 모델과 평균의 차이)+sse(잔차) ->회귀모델의 적합도를 판단할 수 있는 수치
-r^2은 상관계수 제곱-ssr/sst=1-sse/sst-0~1 사이에 존재 -사용하고 있는 예측과 반응변수의 분산을 얼마나 줄였는지 -y를 예측했을 대 대비 x 정보를 사용했을 때 성능향상 정도
> install.packages("matlib")
> library(matlib)
> xlim=c(0,6)
> ylim=c(0,6)
#x축과 y축의 범위를 설정하는 변수들입니다. 여기서는 (0, 6) 범위를 설정하여 그래프의 크기를 결정합니다.
> plot(xlim, ylim, type="n", xlab = "X1", ylab = "X2", asp=1)
> plot(): #그래프를 그리는 함수입니다. 여기서는 아무것도 표시하지 않고,
#x축과 y축의 범위만 설정한 후, 비어있는 그래프를 생성합니다.
> grid() #그래프에 격자를 추가하는 함수입니다.
>
> a=c(4,2)
> b=c(1,3)
>
> vectors(b,labels="b", pos.lab=4, frac.lab=.5, col="green")
> vectors(a,labels="a", pos.lab=4, frac.lab=.5)
> vectors(a+b,labels="a+b", pos.lab=4, frac.lab=.5, col="red")
-plot() 함수를 사용하여 그래프를 생성하는 부분입니다. 여기서 사용된 매개변수들의 의미는 다음과 같습니다:
xlim, ylim: x축과 y축의 범위를 설정합니다. 여기서는 xlim 변수에 (0, 6) 범위를, ylim 변수에도 (0, 6) 범위를 설정하였습니다. 이는 그래프의 x축과 y축이 0부터 6까지의 범위를 가지도록 설정하는 것을 의미합니다.
type="n": 이 매개변수는 그래프의 유형을 지정하는 것입니다. 여기서 "n"은 "none"을 의미하며, 데이터를 포함하지 않고 비어있는 그래프를 생성합니다. 이는 실제 데이터가 아니라 그래프의 구조를 설정하기 위한 것입니다.
xlab, ylab: x축과 y축에 라벨을 추가하는 것을 지정합니다. 여기서는 "X1"과 "X2"라벨이 x축과 y축에 각각 추가됩니다.
asp=1: 이 매개변수는 그래프의 종횡비(Aspect Ratio)를 설정합니다. 여기서는 1로 설정되어 있으므로, x축과 y축의 길이의 비율이 1:1이 되도록 그래프가 생성됩니다. 즉, 그래프가 정사각형 모양으로 보이도록 설정하는 것입니다.\
-pos.lab 및 frac.lab는 vectors() 함수의 옵션 중 일부입니다.
pos.lab: "라벨"의 위치를 지정하는 매개변수입니다. 여기서는 숫자 4가 사용되었으며, 이것은 라벨이 벡터 끝에서부터 어느 정도 떨어진 위치에 표시되는지를 나타냅니다. 일반적으로 1은 벡터 시작점에 가깝고 2는 벡터 끝점에 가까운 위치를 의미합니다. 여기서 4는 끝점에서 시작점 쪽으로 이동하며, 끝점으로부터의 거리를 조절하는 역할을 합니다.
frac.lab: "라벨"의 위치를 벡터의 어느 부분에 표시할지를 결정하는 상대적인 비율을 지정하는 매개변수입니다. 여기서는 0.5가 사용되었으며, 이것은 라벨이 벡터의 중간에 표시되도록 설정합니다. 예를 들어, 0은 벡터의 시작점에, 1은 벡터의 끝점에 라벨이 위치하도록 합니다. 따라서 0.5는 벡터의 중간에 라벨이 표시됩니다.
=t(x)%*%x=단위행렬/1이된다/ 4.510281e-17이나 2.775...e..는 0에 가까운 매우 작은 숫자다 -고유벡터와 전치한 고유벡터의 곱은 단위행렬에 근접한 값으로 나온다 -그 의미는 고유벡터들이 서로 직교한다는 의미이다
- det(mat)=prod(eanalysis$value) 이건 무슨 의미?
행렬의 determinant(det): 행렬의 determinant는 부피 변화율을 나타내며, 행렬이 벡터를 변환할 때 부피의 변화를 결정합니다. 따라서 determinant는 해당 행렬의 크기와 구조에 대한 정보를 제공합니다.
고유값들의 곱(eigenvalues): 고유값들의 곱은 해당 행렬의 고유벡터들이 변환에서 어떻게 동작하는지를 나타냅니다. 고유값들은 행렬이 벡터를 변환할 때 벡터의 크기만을 변화시키고 방향을 유지하는데, 이 때 고유값들은 크기 변화율을 나타내며, 이 값들의 곱은 전체 변환의 크기 변화율을 나타냅니다.
따라서 행렬의 determinant(det)와 고유값들의 곱은 행렬의 변환 특성과 크기에 대한 중요한 정보를 제공합니다. 만약 행렬의 determinant가 0이 아니라면, 고유값들의 곱과 determinant는 서로 관련이 있습니다. 하지만 determinant가 0인 경우에는 추가적인 분석이 필요합니다.
> fx = expression(-x^2 + 6*x - 6)
> dfx = D(fx, 'x')
> dfx
6 - 2 * x
> f = function(x) eval(c(dfx)[[1]])
> f(3)
[1] 0
-expression은 함수를 만든거고 -D함수는 미분 - eval() 함수는 표현식을 평가하여 그 값을 계산합니다. 따라서 c(dfx)는 미분한 결과를 담은 벡터를 반환하고, eval(c(dfx))는 이를 평가하여 결과를 반환합니다. 여기서 [[1]]은 결과 벡터에서 첫 번째 값을 선택하는 것입니다.(chat gpt에서 가져옴)
> fx=function(x){
+ return(x^4-10*x^3+15*x^2-6*x+10)
+ }
> curve(fx)
>
> integr_by_you=function(a,b,n){
+ sum=0#처음에는 0으로
+
+ h=(b-a)/n#전체구간(1-0)을 n개로 나누면 직사각형 밑변의 길이 산출
+
+ for (i in 1:n) {sum = sum+h*fx(a+i*h)#오른쪽 직사각형으로 가면서 높이(f(x))와 h를 곱해가며 더함함
+
+ }
+ return(sum)
+ }
>
> integr_by_you(0,1,10)
[1] 9.70333
> integrate(fx,0,1)#윗 값가 거의 비슷하다다
9.7 with absolute error < 1.1e-13
시뮬레이션을 활용한 수치 적분 소개
> fx=function(x) x^2
> integrate(fx,-2,2)
5.333333 with absolute error < 5.9e-14
> #위와 같은 방식으로
> set.seed(132) #이 함수를 호출하면 이후에 생성되는 난수는 132에서부터 시작하여 동일한 순서로 생성됩니다.
> a=-2
> b=2
> c=0
> d=4
> n=10^5
>
> x= runif(n,a,b)
#"x = runif(n, a, b)는 n개의 난수를 생성하고,
#이를 [a, b] 범위의 균일 분포에서 생성하여 x에 할당하는 것을 의미합니다.
> y= runif(n,c,d)
>
> temp= sum(y<fx(x))
> 16*temp
[1] 532832
#temp는 y < fx(x)를 만족하는 경우의 수를 합산한 것입니다.
#즉, fx(x)의 값보다 y 값이 작은 경우의 수를 셉니다.
#그런 다음 16 * temp는 해당 영역의 근사치를 계산합니다.
#이 경우 16은 x의 범위가 -2에서 2까지이기 때문에 해당 영역의 넓이를 계산하기 위해 사용됩니다.
#temp는 이 영역에 속하는 균일한 무작위 점의 비율을 나타내므로,
#이를 영역의 넓이에 곱하여 전체 영역에 대한 근사치를 계산합니다//
메트릭스와 데이터프레임의 차이점 -데이터프레임은 열마다 다른 유형의 데이터를 가질 수 있다. -메트릭스는 각 열은 같은 데이터 타입을 가지고 있다. ->데이터프레임은 데이터를 정리하고 조작하는데 유용(데이터 분석, 시각화, 전처리) ->메트릭스는 통계분석(숫자형 데이터에 적합)에 유용/수학적 연산을 빠르게(특히 선형대수학)
> class(mat)
[1] "matrix" "array"
> typeof(mat)
[1] "character"
> as.matrix(mat)
[,1] [,2]
[1,] "a" "f"
[2,] "b" "g"
[3,] "c" "h"
[4,] "d" "i"
[5,] "e" "j"
> as.data.frame(mat)
V1 V2
1 a f
2 b g
3 c h
4 d i
5 e j